cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067925 Consider a room of size r X s where rs = 2n and 1 <= r, 1 <= s; count ways to arrange n Tatami mats in room; a(n) = total number of ways for all choices of r and s. Two arrangements are distinguished if one is a rotation or reflection of the other.

Original entry on oeis.org

2, 4, 8, 10, 14, 28, 28, 42, 70, 90, 122, 204, 260, 386, 592, 824, 1192, 1810, 2558, 3764, 5580, 8064, 11794, 17438, 25338, 37144, 54626, 79762, 116852, 171650, 250984, 367874, 539668, 790110, 1157912, 1697978, 2487050, 3645012, 5343444
Offset: 1

Views

Author

Yasutoshi Kohmoto Mar 05 2002

Keywords

Comments

Tatami mats are of size 1 X 2; at most 3 may meet at a point.

Examples

			For n=3 there are 3 incongruent tilings, shown below. These can be rotated to produce 8 tilings, so a(3)=8.
._____. ._____.
|___| | | | | | .___________.
|___|_| |_|_|_| |___|___|___|
		

Crossrefs

Cf. A052270 for number of incongruent tilings, A068920 for table of number of tilings of an r X s room.

Programs

  • Mathematica
    (* See link for Mathematica programs. *)
    c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
    c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
    c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
    t[r_, s_] := Which[r>s, t[s, r], OddQ[r] && r>1, 2 c[r, s], True, c[r, s]];
    A067925[n_] := Module[{i, divs}, divs = Divisors[2 n]; Sum[t[divs[[i]], 2 n/divs[[i]]], {i, 1, Length[divs]}]];
    Table[A067925[n], {n, 1, 50}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

Extensions

Edited by Dean Hickerson, Mar 11 2002