A067925 Consider a room of size r X s where rs = 2n and 1 <= r, 1 <= s; count ways to arrange n Tatami mats in room; a(n) = total number of ways for all choices of r and s. Two arrangements are distinguished if one is a rotation or reflection of the other.
2, 4, 8, 10, 14, 28, 28, 42, 70, 90, 122, 204, 260, 386, 592, 824, 1192, 1810, 2558, 3764, 5580, 8064, 11794, 17438, 25338, 37144, 54626, 79762, 116852, 171650, 250984, 367874, 539668, 790110, 1157912, 1697978, 2487050, 3645012, 5343444
Offset: 1
Examples
For n=3 there are 3 incongruent tilings, shown below. These can be rotated to produce 8 tilings, so a(3)=8. ._____. ._____. |___| | | | | | .___________. |___|_| |_|_|_| |___|___|___|
Links
- Dean Hickerson, Filling rectangular rooms with Tatami mats
Crossrefs
Programs
-
Mathematica
(* See link for Mathematica programs. *) c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]]; c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]]; c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]]; t[r_, s_] := Which[r>s, t[s, r], OddQ[r] && r>1, 2 c[r, s], True, c[r, s]]; A067925[n_] := Module[{i, divs}, divs = Divisors[2 n]; Sum[t[divs[[i]], 2 n/divs[[i]]], {i, 1, Length[divs]}]]; Table[A067925[n], {n, 1, 50}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)
Extensions
Edited by Dean Hickerson, Mar 11 2002
Comments