cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122205 Number of finite sequences b with b(0) = 1, b(i+1) = b(i)+d where d|b(i), ending with n.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 12, 17, 31, 31, 96, 96, 197, 324, 629, 629, 1695, 1695, 4374, 6266, 10671, 10671, 34402, 38776, 73274, 109371, 223510, 223510, 634267, 634267, 1527075, 2172013, 3699717, 4557494, 12736034, 12736034, 25473763, 38283071
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(1) = 1, for n>1, a(n) = sum_{d|n, d

A293665 a(0) = 1; a(n) = -Sum_{d|n} a(n-d).

Original entry on oeis.org

1, -1, 0, -1, 0, -1, 1, -2, 0, -2, 2, -3, 1, -2, 2, -6, 2, -3, 7, -8, 2, -12, 12, -13, 0, -3, 4, -12, 17, -18, 19, -20, -19, -13, 34, -71, 54, -55, 8, -67, 73, -74, 79, -80, -72, -154, 238, -239, 39, -119, 163, -237, 97, -98, 310, -402, -22, -297, 336, -337, 271, -272, 20, -659, 369, -738
Offset: 0

Author

Ilya Gutkovskiy, Oct 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = -Sum[a[n - d], {d, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 65}]

Formula

a(p) = -a(p-1) - 1, for p is a prime.
Showing 1-2 of 2 results.