cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067953 Number of ways to sum numbers from 1 to n to the n-th prime.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 7, 13, 23, 39, 69, 122, 211, 339, 564, 1001, 1764, 2630, 4565, 7192, 10151, 17202, 26152, 43543, 79126, 117496, 156229, 227302, 295011, 422040, 1004905, 1423445, 2210752, 2796140, 5225780, 6546101, 9921635, 14947534
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2002

Keywords

Examples

			a(6)=4, as there are 4 decompositions for A000040(6)=13:
6+5+2 = 6+4+3 = 6+4+2+1 = 5+4+3+1 = 13.
		

Programs

  • Haskell
    a067953 n = p [1..n] $ a000040 n where
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m | m < k = 0 | otherwise = p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 22 2011
    
  • Mathematica
    (* This program is not convenient for a large number of terms *) a[n_] := Count[ IntegerPartitions[ Prime[n], {2, Floor[n/2 + 2]}, Range[n] ], nn_ /; Length[nn] == Length[nn // Union] ]; Table[Print[n, " ", an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Jun 25 2013 *)
  • PARI
    a(n)=my(p=prime(n),x='x);polcoeff(prod(k=1,n,1+x^k, O(x^(p+1))+1), p) \\ Charles R Greathouse IV, Jun 25 2013
    
  • PARI
    first(n)=my(v=vector(n),x='x,P=O(x^(prime(n)+1))+1,i);forprime(p=2,prime(n),P*=1+x^i++;v[i]=polcoeff(P,p));v \\ Charles R Greathouse IV, Jun 25 2013

Formula

a(n) = b(0, n), where b(m, n) satisfies b(m, n) = 1 + sum{b(i, j): m
a(n) < A000009(A000040(n)).

Extensions

a(36)-a(38) from Donovan Johnson, Aug 23 2010