A067955 Number of dissections of a convex polygon by nonintersecting diagonals into polygons with even number of sides and having a total number of n edges (sides and diagonals).
1, 0, 0, 1, 0, 1, 3, 1, 8, 13, 15, 56, 79, 157, 399, 624, 1448, 3061, 5571, 12826, 25559, 51608, 113828, 227954, 482591, 1031681, 2117323, 4542331, 9591243, 20119244, 43164172, 91165297, 193826856, 415024053, 881294603, 1886458874, 4038398755
Offset: 1
Keywords
Examples
a(7)= 3 because the only dissections with 7 edges are given by a hexagon dissected by any of the three halving diagonals.
Links
- Robert Israel, Table of n, a(n) for n = 1..2604
Programs
-
Maple
Order := 40: solve(series((G-G^3)/(1-G^2+G^3),G)=z,G); # Alternative: f:= gfun:-rectoproc({115*n*(n+1)*a(n)+(617*n+1236)*(n+1)*a(n+1)+(2*(569*n^2+2657*n+3006))*a(n+2)+(2*(436*n^2+2737*n+4254))*a(n+3)+(6*(32*n^2+267*n+554))*a(n+4)-(4*(29*n^2+260*n+570))*a(n+5)-(8*(n+6))*(11*n+53)*a(n+6)-(16*(n+7))*(n+6)*a(n+7) = 0,a(0)=0,a(1)=1,a(2)=0,a(3)=0,a(4)=1,a(5)=0,a(6)=1},a(n),remember): map(f, [$1..100]); # Robert Israel, Sep 01 2015
-
Mathematica
CoefficientList[InverseSeries[(x-x^3)/(1-x^2+x^3) + O[x]^40, x], x] // Rest (* Jean-François Alcover, Sep 16 2022 *)
-
PARI
Vec(serreverse((x-x^3)/(1-x^2+x^3)+O(x^44))) \\ Joerg Arndt, Sep 28 2015
Formula
a(n) = (1/n)Sum_{j=1..floor((n-1)/3)} binomial(n, j)binomial((n-3-j)/2, j-1). [formula seems wrong]
G.f. G(z) satisfies (1+z)*G^3 - z*G^2 - G + z = 0.
115*n*(n+1)*a(n)+(617*n+1236)*(n+1)*a(n+1)+(2*(569*n^2+2657*n+3006))*a(n+2)+(2*(436*n^2+2737*n+4254))*a(n+3)+(6*(32*n^2+267*n+554))*a(n+4)-(4*(29*n^2+260*n+570))*a(n+5)-(8*(n+6))*(11*n+53)*a(n+6)-(16*(n+7))*(n+6)*a(n+7) = 0. - Robert Israel, Sep 01 2015
G.f. is the series reversion of (x-x^3)/(1-x^2+x^3). - Joerg Arndt, Sep 28 2015
Comments