cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Nicholas Ham

Nicholas Ham's wiki page.

Nicholas Ham has authored 1 sequences.

A308087 Number of lattice paths from (0,0) to (n,n) using Euclid's orchard as a step-set.

Original entry on oeis.org

1, 1, 1, 3, 13, 45, 153, 515, 1767, 6167, 21697, 76661, 271973, 968561, 3460677, 12399661, 44534647, 160285049, 577949447, 2087375443, 7550053527, 27344761057, 99155777619, 359943568005, 1307923066305, 4756914915657, 17315390737219, 63077564876055
Offset: 0

Author

Nicholas Ham, May 11 2019

Keywords

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y=0, 1, add(add(`if`(1=
          igcd(h, v), b(sort([x-h, y-v])[]), 0), v=1..y), h=1..x))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 12 2019
  • Mathematica
    b[x_, y_] := b[x, y] = If[y == 0, 1, Sum[Sum[If[1 == GCD[h, v], b @@ Sort[{x - h, y - v}], 0], {v, 1, y}], {h, 1, x}]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)

Formula

a(n) mod 2 = 1. - Alois P. Heinz, May 13 2019
a(n) ~ c * d^n / sqrt(n), where d = 3.7137893481485186502229788321701955452444... and c = 0.133597878112414800677299372849715598093... - Vaclav Kotesovec, May 24 2019

Extensions

a(16)-a(27) from Alois P. Heinz, May 12 2019