cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067979 Triangle read by rows of incomplete convolutions of Lucas numbers L(n+1) = A000204(n+1), n>=0.

Original entry on oeis.org

1, 3, 6, 4, 13, 17, 7, 19, 31, 38, 11, 32, 48, 69, 80, 18, 51, 79, 107, 140, 158, 29, 83, 127, 176, 220, 274, 303, 47, 134, 206, 283, 360, 432, 519, 566, 76, 217, 333, 459, 580, 706, 822, 963, 1039, 123, 351, 539, 742, 940, 1138, 1341, 1529, 1757, 1880, 199, 568, 872, 1201, 1520, 1844, 2163, 2492, 2796, 3165, 3364
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

The diagonals d>=0 (d=0: main diagonal) give convolutions of Lucas numbers L(n+1) := A000204(n+1), n>=0, with those with d-shifted index: a(d+n,d) = Sum_{k=0..n} L(k+1)*L(d+n+1-k).
The diagonals give A004799(n-1), A067980-7 for d=n-m= 0..8, respectively. Row sums give A067989.
The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are generated by A(x*z)*(A(z)-x*A(x*z))/(1-x), with A(x) := (1+2*x)/(1-x-x^2) (g.f. Lucas L(n+1), n>=0).

Examples

			Triangle begins:
  {1};
  {3,6};
  {4,13,17};     p(2,x) = 4+13*x+17*x^2
  {7,19,31,38};
  ...
		

Crossrefs

Cf. A067990 (triangle with rows read backwards).

Programs

  • Mathematica
    Table[Sum[LucasL[k + 1] LucasL[n - k + 1], {k, 0, m}], {n, 0, 10}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(m=0,k,(fibonacci(m+2) + fibonacci(m))*(fibonacci(n-m+2) + fibonacci(n-m))), ", "))) \\ G. C. Greubel, Dec 17 2017

Formula

a(n, m) = Sum_{k=0..m} L(k+1)*L(n-k+1), n>=m>=0, else 0.
a(n, m) = (m+1)*L(n-m+1)*F(m) + ((m+1)*L(n-m+1) + m*L(n-m))*F(m+1), n>=m>=0, with F(n) := A000045(n) (Fibonacci) and L(n) := A000032(n) (Lucas).
G.f. for diagonals d= n-m>=0: (x^d)*(L(d+1)+L(d)*x)*(1-2*x)/(1-x-x^2)^2.
a(n, m) = -(-1)^m*F(n-2*m-1) + m*L(n+2)+F(n+3), with F(-n) = (-1)^(n+1) * F(n), hence a(n, m) = -5*A067330(n, m)+2*(m+1)*L(n+2), n>=m>=0. - Ehren Metcalfe, Apr 11 2016