cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068018 Number of fixed points in all 132- and 213-avoiding permutations of {1,2,...,n} (these are permutations with runs consisting of consecutive integers).

Original entry on oeis.org

0, 1, 2, 4, 6, 12, 18, 40, 62, 148, 234, 576, 918, 2284, 3650, 9112, 14574, 36420, 58266, 145648, 233030, 582556, 932082, 2330184, 3728286, 9320692, 14913098, 37282720, 59652342, 149130828, 238609314, 596523256, 954437198, 2386092964, 3817748730, 9544371792
Offset: 0

Views

Author

Emeric Deutsch, Mar 22 2002

Keywords

Examples

			a(3) = 4 because the permutations 123, 231, 312, 321 of {1,2,3} contain 4 fixed points altogether (all three entries of the first permutation and entry 2 in the last one).
		

Crossrefs

Cf. A061547.

Programs

  • Maple
    seq(2^n/4-(-2)^n/36+2*n/3-2/9,n=0..40);

Formula

a(n) = 2^n/4 - (-2)^n/36 + 2*n/3 - 2/9.
G.f.: z*(1 - 3*z^2)/((1 - 4*z^2)*(1 - z)^2).
E.g.f.: (cosh(x)*(5*sinh(x) + 6*x - 2) + 2*(cosh(2*x) + (3*x - 1)*sinh(x)))/9. - Stefano Spezia, Jun 12 2023