cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068021 Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=4.

Original entry on oeis.org

1, 31, 121, 651, 781, 4333, 2801, 11811, 11011, 26481, 16105, 96957, 30941, 92613, 100771, 200787, 88741, 412087, 137561, 579201, 354923, 520221, 292561, 1812477, 508431, 993153, 925771, 2003477, 732541, 3996003, 954305, 3309747, 2006851
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CIP4 = CycleIndexPolynomial[SymmetricGroup[4], Array[x, 4]]; a[n_] := CIP4 /. x[k_] -> DivisorSigma[k, n]; Array[a, 33] (* Jean-François Alcover, Nov 04 2016 *)

Formula

1/4!*(sigma[1](n)^4 + 6*sigma[1](n)^2*sigma[2](n) + 8*sigma[1](n)*sigma[3](n) + 3*sigma[2](n)^2 + 6*sigma[4](n)).