A068030 Number of subsets of {1,2,3,...,n} that sum to 0 mod 9.
1, 1, 1, 1, 2, 4, 8, 15, 30, 60, 116, 230, 458, 912, 1824, 3648, 7286, 14572, 29144, 58264, 116524, 233044, 466048, 932096, 1864192, 3728300, 7456600, 14913200, 29826224, 59652440, 119304872, 238609408, 477218816, 954437632, 1908874584
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..3321
- Mathematics StackExchange, Let S = 1,2,3,4,...,2070 find the number of subsets of S whose sum of elements in S is divisible by 9
- Robert Israel, Proof of conjectured g.f.
Crossrefs
9th row of A068009.
Programs
-
Maple
G:= Array(0..100, 0..8): G[0,0]:= 1; for j from 1 to 8 do G[0,j]:= 0 od: for n from 1 to 100 do for j from 0 to 8 do k:= j - n mod 9; G[n,j]:= G[n-1,j] + G[n-1,k]; od od: seq(G[n,0],n=0..100); # Robert Israel, Apr 30 2019
Formula
Empirical G.f.: -(4*x^12-2*x^9-x^7+2*x^6+2*x^5+2*x^4-3*x^3-x^2-x+1) / ((2*x-1)*(2*x^3-1)*(2*x^9-1)). [Colin Barker, Dec 22 2012]
Empirical G.f. verified: see link. - Robert Israel, Apr 30 2019