cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068910 a(n) is the unique k such that palindrome A068065(n) = k + reverse(k).

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 100, 120, 130, 140, 1000, 10000, 10100, 10200, 10300, 10400, 100000, 1000000, 1001000, 1002000, 1003000, 1004000, 10000000, 100000000, 100010000, 100020000, 100030000, 100040000, 1000000000, 10000000000
Offset: 0

Views

Author

Klaus Brockhaus, Mar 05 2002

Keywords

Examples

			a(14) = 10300, since A068065(14) = 10601 = 10300 + 00301 and for no other k we have 10601 = k + reverse(k).
		

Crossrefs

Cf. A068065.

A072427 Numbers n for which there is a unique k such that n = k + reverse(k).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 101, 141, 161, 181, 198, 201, 221, 241, 261, 281, 1001, 1818, 1838, 1858, 1878, 1898, 1918, 1938, 1958, 1978, 1998, 2981, 10001, 10201, 10401, 10601, 10801, 11001, 11201, 11401, 11601, 11801, 18018, 19998
Offset: 1

Views

Author

Klaus Brockhaus, Jun 17 2002

Keywords

Comments

Subsequence of A067030. First term is A072041(1). A068065 is a subsequence of this sequence.

Examples

			18 = 9 + 9; 261 = 180 + 081; 11401 = 10700 + 00701.
		

Crossrefs

Programs

  • ARIBAS
    var n,k,c,i,rev: integer; st,nst: string; end; m := 1; for n := 0 to 29000 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i],nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n,","); end; end;
  • Mathematica
    revAdd[n_] := n + FromDigits[Reverse[IntegerDigits[n]]]; ra=Table[revAdd[n], {n, 0, 10^5}]; t=Sort[Tally[ra]]; First /@ Select[t, #[[2]] == 1 && #[[1]] <= Length[ra] &]
Showing 1-2 of 2 results.