cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068085 Numbers k such that k and 10*k are both triangular numbers.

Original entry on oeis.org

0, 1, 21, 78, 1540, 30381, 112575, 2220778, 43809480, 162333171, 3202360435, 63173239878, 234084320106, 4617801526591, 91095768094695, 337549427259780, 6658866598983886, 131360034419310411, 486746040024282753, 9602081017933237120, 189421078536877518066, 701887452165588470145
Offset: 1

Views

Author

Amarnath Murthy, Feb 18 2002

Keywords

Comments

Let y=sqrt(8*k+1) and x=sqrt(80*k+1), which must be integers if k and 10*k are triangular. These quantities satisfy the Pell-like equation x^2 - 10*y^2 = -9. All solutions x+y*sqrt(10) are obtained from 1+sqrt(10), 9+3*sqrt(10) and 41+13*sqrt(10) by multiplying by powers of the fundamental unit 19+6*sqrt(10).
Conjecture: satisfies a linear recurrence having signature (1, 0, 1442, -1442, 0, -1, 1). - Harvey P. Dale, Sep 03 2020
This conjecture is true because of the connection between (generalized) Pell equations and continued fractions of quadratic irrationals. - Georg Fischer, Feb 23 2021
From Vladimir Pletser, Feb 26 2021: (Start)
The triangular numbers T(t) that are one-tenth of other triangular numbers T(u) : T(t)=T(u)/10. The t's are in A341893, and the u's are in A341895.
Can be defined for negative n by setting a(n) = a(1-n) for all n in Z. (End)

Examples

			21 and 210 are both triangular numbers.
		

Crossrefs

Cf. for k and m*k both triangular: A075528 (m=2), A076139 (m=3), 0 (m=4), A077260 (m=5), A077289 (m=6), A077399 (m=7), A336624 (m=8), 0 (m=9), this sequence (m=10).

Programs

  • Maple
    f := gfun:-rectoproc({a(-3) = 21, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 21, a(n) = 1442*a(n-3)-a(n-6)+99}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ; # Vladimir Pletser, Feb 26 2021
  • Mathematica
    a[0]=0; a[1]=1; a[2]=21; a[n_] := a[n]=(99+1442a[n-3]+57Sqrt[(1+8a[n-3])(1+80a[n-3])])/2

Formula

a(n) = (99 + 1442*a(n-3) + 57*sqrt((1 + 8*a(n-3))*(1 + 88*a(n-3))))/2.
G.f.: -x^2*(x^4+20*x^3+57*x^2+20*x+1) / ((x-1)*(x^6-1442*x^3+1)). - Colin Barker, Jun 24 2014
From _Vladimir Pletser, Feb 26 2021: (Start)
a(n) = 1442 *a(n-3) - a(n-6) + 99, for n > 3, with a(-2) = 21, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 21.
a(n) = a(n - 1) + 1442 ( a(n - 3) - a(n - 4) ) - ( a(n - 6) - a(n - 7) ) for n >= 4 with a(-2) = 21, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 21.
a(n) = b(n)*(b(n)+1)/2 where b(n) is A341893(n). (End)

Extensions

Edited by Dean Hickerson, Feb 20 2002
More terms from Georg Fischer, Feb 23 2021