cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068110 Denominators of coefficients in J0(i*sqrt(x))^2 power series where J0 denotes the ordinary Bessel function of order 0.

Original entry on oeis.org

1, 2, 32, 576, 73728, 409600, 176947200, 17340825600, 1183800360960, 1725980926279680, 3451961852559360000, 39779750872350720000, 137478819014844088320000, 1858713633080692074086400, 377800756235068077873561600, 2550155104586709525646540800000, 20890870616774324434096462233600000
Offset: 0

Views

Author

Benoit Cloitre, Mar 21 2002

Keywords

References

  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, 1989; see Hypergeometric series, p. 59.

Crossrefs

Cf. A068111 (numerators).

Programs

  • Mathematica
    Denominator[CoefficientList[Series[BesselJ[0, I*Sqrt[x]]^2, {x, 0, 15}], x]] (* Amiram Eldar, Jan 17 2025 *)

Formula

J0(i*sqrt(x))^2 = Sum_{n>=0} (2n)!/(n!)^4/2^(2n)*x^n.

Extensions

More terms from Amiram Eldar, Jan 17 2025