A068166 Define an increasing sequence as follows. Given the first term, called the seed (which need not share the property of the remaining terms), subsequent terms are obtained by inserting at least one digit in the previous term so as to obtain the smallest number with the specified property. This is the prime sequence with the seed a(1) = 1.
1, 11, 101, 1013, 10103, 100103, 1001003, 10010023, 100010023, 1000100239, 10001000239, 100010002039, 1000100020319, 10001000200319, 100001000200319, 1000010002000319, 10000100002000319, 100001000020003109, 1000010000200031039, 10000100002000310329
Offset: 1
Examples
The primes obtained by inserting/placing a digit in a(2) = 11 are 101, 113, 131, 181, 191, 211, 311, etc. and the smallest is 101, hence a(3) = 101.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..300
Crossrefs
Cf. A068167.
Extensions
Corrected and extended by Robert Gerbicz, Sep 06 2002