cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A119742 Partial sum of tetradic primes (A068188).

Original entry on oeis.org

11, 112, 293, 18474, 1026475, 2207286, 4088167, 5970048, 106081049, 206969050, 315070851, 425181862, 536191973, 647373084, 766191895, 946292976, 1127404157, 1309292338, 1497303219, 1686192100, 11694372101, 21776190102
Offset: 1

Views

Author

Jonathan Vos Post, Jun 16 2006

Keywords

Comments

Tetradic primes are primes that are palindromes and use only the digits 0, 1 and 8, so they read the same backwards and upside down. a(1) = 11, a(3) = 293 and a(21) = 11694372101 are primes.

Examples

			a(21) = 11 + 101 + 181 + 18181 + 1008001 + 1180811 + 1880881 + 1881881 + 100111001 + 100888001 + 108101801 + 110111011 + 111010111 + 111181111 + 118818811 + 180101081 + 181111181 + 181888181 + 188010881 + 188888881 + 10008180001 = 11694372101.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A068188(i). a(n) = SUM[i=1..n] {A006072(k) such that A006072(k) is in A000040}.

Extensions

Corrected by Jens Kruse Andersen, Apr 27 2010

A068187 a(n) is the smallest number such that the product of its decimal digits equals n^n, or 0 if no solutions exist.

Original entry on oeis.org

1, 4, 39, 488, 55555, 88999, 7777777, 88888888, 999999999, 25555555555888, 0, 88888888999999, 0, 4777777777777778888, 35555555555555559999999, 2888888888888888888888, 0, 888888999999999999999999, 0, 2555555555555555555558888888888888, 37777777777777777777779999999999
Offset: 1

Views

Author

Labos Elemer, Feb 18 2002

Keywords

Comments

a(n) = 0 if and only if n has a prime factor > 7. If n > 1 has no prime factor > 7, let n^n = 2^a*3^b*5^c*7^d. Let m(x) denote the number of digit x in a(n). Then a(n) is a number whose digits are nondecreasing and defined as follows. m(2) = 1 if a mod 3 == 1 and 0 otherwise, m(3) = 1 if b mod 2 == 1 and 0 otherwise, m(4) = 1 if a mod 3 == 2 and 0 otherwise, m(5) = c, m(6) = 0, m(7) = d, m(8) = floor(a/3), m(9) = floor(b/2). - Chai Wah Wu, Aug 12 2017

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A068187(n):
        if n == 1:
            return 1
        pf = factorint(n)
        return 0 if max(pf) > 7 else int(''.join(sorted(''.join(str(a)*(n*b) for a,b in pf.items()).replace('222','8').replace('22','4').replace('33','9')))) # Chai Wah Wu, Aug 13 2017

Extensions

Edited by Dean Hickerson and Henry Bottomley, Mar 07 2002

A133207 Strobogrammatic non-palindromic primes.

Original entry on oeis.org

619, 16091, 19861, 61819, 116911, 119611, 160091, 169691, 191161, 196961, 686989, 688889, 1068901, 1160911, 1190611, 1191611, 1681891, 1690691, 1898681, 1908061, 1960961, 1990661, 6081809, 6100019, 6108019, 6110119, 6608099, 6610199
Offset: 1

Views

Author

Tanya Khovanova, Oct 10 2007

Keywords

Comments

Primes which are invariant under a 180-degree rotation, but do not have a mirror symmetry.

Crossrefs

Cf. The elements of this sequence are the elements of A007597 (Strobogrammatic primes) excluding the elements of A068188 (Tetradic primes).

Programs

  • Mathematica
    Select[Range[10000000], PrimeQ[ # ] && Union[IntegerDigits[ # ], {0, 1, 6, 8, 9}] == {0, 1, 6, 8, 9} && Reverse[IntegerDigits[ # ] /. {6 -> 9, 9 -> 6} ] == IntegerDigits[ # ] && Reverse[IntegerDigits[ # ]] != IntegerDigits[ # ] &]

A155584 Array, read by antidiagonals, of n-th strobogrammatic number in base k.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 5, 4, 0, 1, 5, 10, 7, 5, 0, 1, 6, 17, 13, 9, 6, 0, 1, 7, 26, 21, 28, 15, 7, 0, 1, 8, 37, 31, 65, 40, 17, 8, 0, 1, 9, 50, 43, 126, 85, 82, 21, 9, 0, 1, 8, 65, 57, 217, 156, 257, 91, 27, 10, 0, 1, 8, 10, 73, 344, 259, 626, 273, 112, 31, 11, 0, 1, 8, 11, 80, 513, 400, 1297, 651, 325, 121, 33, 12
Offset: 1

Views

Author

Jonathan Vos Post, Jan 24 2009

Keywords

Comments

If a binary number is palindromic, it is also strobogrammatic. In bases 3 through 7, this is not true, where only digits 0 and 1 can be used, because 8 is not a digit, nor are either of the inversion paid (6,9). I do not show bases beyond 10, although admittedly some letters as digits are other letters upside-down.

Examples

			A[2,4] = 5 because 4th strobogrammatic number base 2 = 101 = 5 (base 10). A[9,8] = 154 because 8th strobogrammatic number base 9 = 181 = 154 (base 10). The array begins: ===================================================================================
..n.|.1.|.2.|.3.|..4.|..5.|...6.|...7.|....8.|....9.|...10.|...11.|....12.|
===================================================================================
k=1.|.0.|.1.|.2.|..3.|..4.|...5.|...6.|....7.|....8.|....9.|...10.|....11.|
k=2.|.0.|.1.|.3.|..5.|..7.|...9.|..15.|...17.|...21.|...27.|...31.|....33.|A006995
k=3.|.0.|.1.|.4.|.10.|.13.|..28.|..40.|...82.|...91.|..112.|..121.|...244.|
k=4.|.0.|.1.|.5.|.17.|.21.|..65.|..85.|..257.|..273.|..325.|..341.|..1025.|
k=5.|.0.|.1.|.6.|.26.|.31.|.126.|.156.|..626.|..651.|..756.|..781.|..3126.|
k=6.|.0.|.1.|.7.|.37.|.43.|.217.|.259.|.1297.|.1333.|.1519.|.1555.|..7777.|
k=7.|.0.|.1.|.8.|.50.|.57.|.344.|.400.|.2402.|.2451.|.2752.|.2801.|.16808.|
k=8.|.0.|.1.|.9.|.65.|.73.|.513.|.585.|.4097.|.4161.|.4617.|.4681.|.32769.|
k=9.|.0.|.1.|.8.|.10.|.80.|..82.|..91.|..154.|..656.|..665.|..728.|...730.|
k=10|.0.|.1.|.8.|.11.|.69.|..88.|..96.|..101.|..111.|..181.|..609.|...619.|A000787
===================================================================================
		

Crossrefs

Programs

  • Maple
    strobo := proc(b,n)
            option remember;
            local a;
            if n <=2 then
                    return n-1 ;
            elif b = 1 then
                    return n-1 ;
            else
                    for a from procname(b,n-1)+1 do
                            isstrobo := true ;
                            dgsa := convert(a,base,b) ;
                            for d from 1 to nops(dgsa) do
                                    if op(d,dgsa)=1 and op(-d,dgsa) <> 1 then
                                            isstrobo := false;
                                    elif op(d,dgsa)=8 and op(-d,dgsa) <> 8 then
                                            isstrobo := false;
                                    elif op(d,dgsa)=6 and op(-d,dgsa) <> 9 then
                                            isstrobo := false;
                                    elif op(d,dgsa)=9 and op(-d,dgsa) <> 6 then
                                            isstrobo := false;
                                    elif op(d,dgsa)=0 and op(-d,dgsa) <> 0 then
                                            isstrobo := false;
                                    elif op(d,dgsa) in { 2,3,4,5,7} then
                                            isstrobo := false;
                                    end if;
                            end do;
                            if isstrobo then
                                    return a;
                            end if;
                    end do:
            end if;
    end proc: # R. J. Mathar, Sep 30 2011

A155801 Nontrivial "Strobogrammatic" primes, the same "upside-down" in at least one base b with 2 <= b <= 10.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 31, 37, 43, 73, 101, 107, 127, 181, 257, 313, 443, 619, 757, 1093, 1193, 1297, 1453, 1571, 1619, 1787, 1831, 1879, 2801, 4889, 5113, 5189, 5557, 5869, 5981, 6211, 6827, 7607, 7759, 7919, 8191
Offset: 1

Views

Author

Jonathan Vos Post, Jan 27 2009

Keywords

Comments

I have to say "nontrivial" because every nonnegative integer is strobogrammatic in base 1. Strobogrammatic binary primes == primes in A006995 == A016041. Strobogrammatic primes in base 3 = 13, 757, 1093, 9103, ... == primes strobogrammatic in bases 2 and 3. For bases 2 < k < 8 we have that every strobogrammatic prime in base k must also be strobogrammatic in base 2 and hence palindromic in base 2. Hence we have, for example, strobogrammatic base-4 primes = A056130 = "Palindromic primes in bases 2 and 4."
Strobogrammatic primes in base 5 = 31, 19531, 394501, 472631, ... == primes strobogrammatic in base 2 and base 5. Strobogrammatic primes base 6 = 7, 37, 43, 1297, 55987, ... == primes strobogrammatic in base 2 and base 6. Note that 1101011 (base 6) = 18881 (base 10) which is strobogrammatic base 10 but not prime base 6 nor 10 (though prime base 2). Strobogrammatic primes base 7 = 2801, 134807, this last being strobogrammatic prime in bases 2, 4 and 7. Strobogrammatic primes base 8 = 73, 262657, 295433, ... Strobogrammatic primes base 9 break the above pattern, as they can have the digit 8 and are A068188 (tetradic primes). Strobogrammatic primes base 10 == A007597. Except sometimes for the first element, these (for the same range of k) must all have an odd number of digits.

Examples

			5189 = 1101011 (base 6) which numeral string is the same upside-down (and backwards). 11, 101, 181 and 619 are strobogrammatic base 10, the conventional interpretation of the word.
		

Crossrefs

Formula

A000040 INTERSECTION A155584[1 < k < 11, n].
Showing 1-5 of 5 results.