A068312 Arithmetic derivative of triangular numbers.
0, 0, 1, 5, 7, 8, 10, 32, 60, 39, 16, 61, 71, 20, 71, 244, 212, 111, 123, 143, 247, 131, 34, 380, 520, 155, 378, 621, 275, 247, 263, 1008, 1280, 271, 239, 951, 795, 56, 343, 1256, 1004, 431, 451, 581, 1443, 942, 70, 2092, 2492, 840
Offset: 0
Examples
a(7) = d(7*8/2) = d(28) = d(2*14) = d(2)*14 + 2*d(14) = 1*14 + 2*d(2*7) = 14 + 2*(2*d(7) + d(2)*7) = 14 + 2*(2*1 + 1*7) = 14 + 2*9 = 14 + 18 = 32, where d(n) = A003415(n) with d(1) = 0, d(prime) = 1 and d(m*n) = d(m)*n + m*d(n).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a068312 = a003415 . a000217 -- Reinhard Zumkeller, May 26 2015
-
Mathematica
a[0] = a[1] = 0; a[n_] := (n*(n+1)/2) * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n*(n+1)/2]); Array[a, 100, 0] (* Amiram Eldar, May 14 2025 *)
-
Python
from sympy import factorint def A068312(n): return 0 if n <= 1 else ((n+1)*sum((n*e//p for p,e in factorint(n).items()))+ sum(((n+1)*e//p for p,e in factorint(n+1).items()))*n - (n*(n+1)//2))//2 # Chai Wah Wu, Jun 24 2022
Formula
Extensions
a(0)=0 prepended by Reinhard Zumkeller, May 26 2015