A068337 a(n) = n!*Sum_{k=1..n} mu(k)/k, where mu(k) is the Möbius function.
1, 1, 1, 4, -4, 96, -48, -384, -3456, 328320, -17280, -207360, -481697280, -516741120, 79427174400, 1270834790400, 681401548800, 12265227878400, -6169334376038400, -123386687520768000, -158218429759488000, 47610136717000704000
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..450
- Friedrich Roesler, Riemann's hypothesis as an eigenvalue problem, Linear Algebra and its Applications, Vol. 81 (1986), pp. 153-198.
- Friedrich Roesler, Riemann's hypothesis as an eigenvalue problem. II, Linear Algebra and its Applications, Vol. 92 (1987), pp. 45-73.
Programs
-
Mathematica
n = 25; Accumulate[Table[MoebiusMu[k]/k, {k, 1, n}]] * Range[n]! (* Amiram Eldar, Oct 22 2020 *)
-
Python
from math import factorial from functools import lru_cache from sympy import harmonic @lru_cache(maxsize=None) def f(n): if n <= 1: return 1 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (harmonic(j-1)-harmonic(j2-1))*f(k1) j, k1 = j2, n//j2 return c+harmonic(j-1)-harmonic(n) def A068337(n): return factorial(n)*f(n) # Chai Wah Wu, Nov 03 2023
Formula
a(n) = (-1)^(n-1)*{determinant of the n X n matrix m(i,j) = i+(j (mod i))} - Benoit Cloitre, May 28 2004
From Amiram Eldar, Oct 22 2020: (Start)
a(n) ~ O(n! * n^(-1/2 + eps)), for every eps>0, if and only if Riemann's hypothesis is true (Roesler, 1986). (End)