cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068337 a(n) = n!*Sum_{k=1..n} mu(k)/k, where mu(k) is the Möbius function.

Original entry on oeis.org

1, 1, 1, 4, -4, 96, -48, -384, -3456, 328320, -17280, -207360, -481697280, -516741120, 79427174400, 1270834790400, 681401548800, 12265227878400, -6169334376038400, -123386687520768000, -158218429759488000, 47610136717000704000
Offset: 1

Views

Author

Leroy Quet, Feb 27 2002

Keywords

Crossrefs

Programs

  • Mathematica
    n = 25; Accumulate[Table[MoebiusMu[k]/k, {k, 1, n}]] * Range[n]! (* Amiram Eldar, Oct 22 2020 *)
  • Python
    from math import factorial
    from functools import lru_cache
    from sympy import harmonic
    @lru_cache(maxsize=None)
    def f(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (harmonic(j-1)-harmonic(j2-1))*f(k1)
            j, k1 = j2, n//j2
        return c+harmonic(j-1)-harmonic(n)
    def A068337(n): return factorial(n)*f(n) # Chai Wah Wu, Nov 03 2023

Formula

a(n) = (-1)^(n-1)*{determinant of the n X n matrix m(i,j) = i+(j (mod i))} - Benoit Cloitre, May 28 2004
From Amiram Eldar, Oct 22 2020: (Start)
a(n) = A000142(n)*A070888(n)/A070889(n).
a(n) ~ O(n! * n^(-1/2 + eps)), for every eps>0, if and only if Riemann's hypothesis is true (Roesler, 1986). (End)