cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068542 Period of the fraction 1/3^n.

Original entry on oeis.org

3, 1, 370, 123456790, 411522633744855967078189300, 137174211248285322359396433470507544581618655692729766803840877914951989026063100
Offset: 1

Views

Author

Benoit Cloitre, Mar 22 2002

Keywords

Comments

The length of the period is the number of digits of a(n): 1, 1, 3, 9, 27, 81, ... The terms a(n) are more precisely the integers made from the digits of a period, starting with the first nonzero digit. - M. F. Hasler, Apr 23 2021

Examples

			1/3^3 = 0.0370370370..., hence a(3) = 370.
		

Programs

  • Maple
    f:= proc(n) local k,v;
        k:= numtheory:-order(10,3^n);
        v:= (10^k-1)/3^n;
        v * 10^(k-ilog10(v)-1)
    end proc:
    map(f, [$1..8]); # Robert Israel, Jul 23 2025
  • PARI
    apply( {A068542(n)=10^(3^max(n-2,0)+logint(3^n,10))\3^n}, [1..6]) \\ M. F. Hasler, Apr 23 2021

Formula

a(n) = floor(10^(3^max(n-2,0)+L(3^n))/3^n) where L(m) = floor(log10(m)). - M. F. Hasler, Apr 23 2021