cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068600 Number of n-uniform tilings having n different arrangements of polygons about their vertices.

Original entry on oeis.org

11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Brian Galebach, Mar 28 2002

Keywords

Comments

Sequence gives the number of edge-to-edge regular-polygon tilings having n topologically distinct vertex types, with each vertex type having a different arrangement of surrounding polygons. Does not allow for tilings with two or more vertex types having the same arrangement of surrounding polygons, even when those vertices are topologically distinct. There are no 8- or higher-uniform tilings having the equivalent number of distinct polygon arrangements.
There are eleven 1-uniform tilings (also called the "Archimedean" tessellations) which comprise the three regular tessellations (all triangles, squares, or hexagons) plus the eight semiregular tessellations. (See A250120. - N. J. A. Sloane, Nov 29 2014)

References

  • This sequence was originally calculated by Otto Krotenheerdt.
  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, page 69.
  • Krotenheerdt, Otto. "Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene," Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-natur. Reihe, 18(1969), 273-290; 19 (1970)19-38 and 97-122.

Crossrefs

Cf. A068599.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).