A068638 a(1) = 1, a(n) = smallest distinct composite number such that a(n) + a(k) is a composite number for all k = 1 to n.
1, 8, 14, 20, 24, 25, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 90, 92, 94, 98, 104, 110, 116, 118, 120, 122, 128, 134, 140, 144, 146, 152, 158, 160, 164, 170, 176, 182, 184, 188, 194, 200, 206, 212, 218, 220, 224, 230, 234, 236, 242, 248, 254, 260, 264, 266
Offset: 1
Examples
a(2) = 8 as for the smaller composite numbers 4 and 6 one gets 4 + 1 = 5 and 6 + 1 = 7, both primes. a(3) = 14 as 1 + 14 = 15 and 8 + 14 = 22 are composite.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A025044.
Programs
-
Mathematica
a1 = {0}; nmax = 266; Do[ If[Select[n + a1, PrimeQ] == {}, AppendTo[a1, n]] , {n, nmax}]; Rest[a1] (* Ray Chandler, Jan 15 2017 *)
-
Python
from sympy import isprime from itertools import islice def agen(start=1): # generator of terms alst, k, sums = [0, start], 2, {0} | {start} while True: yield alst[-1] while any(isprime(k+an) for an in alst): k += 1 alst.append(k) k += 1 print(list(islice(agen(), 60))) # Michael S. Branicky, Dec 15 2022
Extensions
More terms from Sascha Kurz, Mar 17 2002
Description clarified by Ray Chandler, Jan 15 2017
Comments