cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068653 Composite numbers such that every cyclic shift (other than the number itself) gives a prime.

Original entry on oeis.org

14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76, 91, 92, 95, 98, 110, 118, 119, 133, 170, 176, 194, 310, 316, 398, 710, 712, 715, 730, 731, 736, 772, 775, 778, 779, 790, 793, 794, 914, 935, 970, 973, 1118, 1130, 1195, 1312, 1336, 1370, 1774, 1937, 3110, 3112
Offset: 1

Views

Author

Amarnath Murthy, Feb 28 2002

Keywords

Comments

Single-digit numbers are excluded. There are only 144 terms up through 10 million. - Harvey P. Dale, Sep 12 2014

Examples

			176 is a term as the two cyclic shifts other than the number itself, 761 and 617, are primes.
		

Crossrefs

Programs

  • Mathematica
    LiQ[n_] := Module[{s=0}, li1=IntegerDigits[n]; k=Length[li1]; t={li1}; Do[li1=RotateLeft[li1]; AppendTo[t,li1], {i,k-1}]; If[Length[Select[Table[FromDigits[p],{p,t}], PrimeQ]] == k-1, s=1]; s]; t1={}; Do[If[!PrimeQ[i] && LiQ[i]==1, AppendTo[t1,i]], {i,10,3112}]; t1 (* Jayanta Basu, May 03 2013 *)
    cppQ[n_]:=Module[{c=FromDigits/@NestList[RotateLeft[#]&,IntegerDigits[n], IntegerLength[ n]-1]},CompositeQ[c[[1]]]&&AllTrue[Rest[c],PrimeQ]]; Select[ Range[10,5000],cppQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 12 2014 *)
  • Python
    from itertools import product
    from sympy import isprime
    A068653_list = []
    for l in range(1,9):
        for m in product(('1379' if l > 1 else '123579'),repeat=l):
            for d in '0123456789':
                s = ''.join(m)+d
                n = int(s)
                if not isprime(n):
                    for k in range(len(s)-1):
                        s = s[1:]+s[0]
                        if not isprime(int(s)):
                            break
                    else:
                        A068653_list.append(n) # Chai Wah Wu, May 06 2017

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 21 2002