A068684
Primes obtained as a concatenation p,q,p where p and q are successive primes and p
353, 131713, 171917, 192319, 293129, 374137, 434743, 596159, 677167, 139149139, 163167163, 179181179, 223227223, 229233229, 269271269, 281283281, 347349347, 379383379, 547557547, 683691683, 761769761, 857859857, 863877863, 102110311021, 103910491039, 108710911087, 109110931091, 109310971093
Offset: 1
Examples
171917 is a prime which is the concatenation of 17, 19 and 17.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
cat3:= proc(a,b,c) local alpha,beta; beta:= ilog10(c)+1; alpha:= beta + ilog10(b)+1; 10^alpha*a + 10^beta*b + c end proc: R:= NULL: count:= 0: q:= 2: while count < 100 do p:= q; q:= nextprime(q); v:= cat3(p,q,p); if isprime(v) then R:= R,v; count:= count+1; fi od: R; # Robert Israel, Jul 01 2025
-
PARI
f(n)=prime(n)*(10^(ceil(log(prime(n+1))/log(10))+ceil(log(prime(n))/log(10))))+ prime(n+1)*10^ceil(log(prime(n))/log(10))+prime(n); for(n=1,300, if(isprime(f(n))==1, print1(f(n),", ")))
Extensions
More terms from Benoit Cloitre, Mar 21 2002
More terms from Robert Israel, Jul 02 2025