cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068715 Primes of the form 10*3^k + 1.

Original entry on oeis.org

11, 31, 271, 811, 21871, 196831, 5314411, 3874204891, 313810596091, 46383976865881019793281501678905914543189676980091, 2738927449953408337773479392637715347860807235997334411
Offset: 1

Views

Author

Amarnath Murthy, Mar 05 2002

Keywords

Examples

			21871 is a member as it is a concatenation of 2187 (= 3^7) and 1.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 10*3^n + 1]; // Vincenzo Librandi, Dec 08 2011
  • Mathematica
    Select[Table[10*3^n+1,{n,0,300}],PrimeQ](* Vincenzo Librandi, Dec 08 2011 *)

Extensions

More terms from Sascha Kurz, Mar 17 2002

A068801 Primes that can be formed by concatenating 2^a and 3^b.

Original entry on oeis.org

11, 13, 19, 23, 29, 41, 43, 83, 89, 127, 163, 181, 227, 281, 641, 643, 827, 881, 1283, 1289, 1627, 2243, 2729, 4243, 4729, 6427, 6481, 8243, 10243, 16561, 16729, 20483, 26561, 40961, 42187, 81929, 86561, 102481, 163841, 166561, 219683, 326561, 327689, 859049
Offset: 1

Views

Author

Amarnath Murthy, Mar 05 2002

Keywords

Examples

			8243 is a concatenation of 2^3 and 3^5. 10242187 is a term as a concatenation of 1024 (=2^10) and 2187(=3^7).
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count, takewhile
    def auptod(digits):
        M = 10**digits
        pows2 = list(takewhile(lambda x: x < M , (2**a for a in count(0))))
        pows3 = list(takewhile(lambda x: x < M , (3**b for b in count(0))))
        strs2, strs3 = list(map(str, pows2)), list(map(str, pows3))
        concat = (int(s2+s3) for s2 in strs2 for s3 in strs3)
        return sorted(set(t for t in concat if t < M and isprime(t)))
    print(auptod(6)) # Michael S. Branicky, Aug 17 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 25 2002
a(43) and beyond from Michael S. Branicky, Aug 17 2022
Showing 1-2 of 2 results.