A068796 Maximum k such that k consecutive integers starting at n have distinct numbers of prime factors (counted with multiplicity).
2, 1, 2, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 1, 4, 3, 2, 2, 3, 2, 1, 3, 3, 2, 1, 2, 1, 2, 2, 4, 3, 2, 1, 1, 3, 3, 2, 1, 4, 3, 2, 2, 2, 1, 4, 3, 4, 3, 2, 2, 4, 4, 3, 2, 2, 2, 1, 3, 2, 5, 4, 3, 3, 4, 3, 2, 3, 2, 4, 3, 2, 4, 3, 2, 1, 2, 5, 5, 4, 4, 3, 3, 3, 2, 1, 1, 3, 2, 4, 3, 2, 2, 1, 1, 4, 3, 2, 1, 3, 3, 2, 3, 4
Offset: 1
Keywords
Examples
a(6)=3 because 6, 7, 8 and 9 have, respectively, 2, 1, 3 and 2 prime factors; the first 3 of these are distinct.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
bigomega[n_] := Plus@@Last/@FactorInteger[n]; a[n_] := For[k=1; s={bigomega[n]}, True, k++, If[MemberQ[s, z=bigomega[n+k]], Return[k], AppendTo[s, z]]] ss={}; Do[s={PrimeOmega[n]};k=1;While[FreeQ[s, (b=PrimeOmega[n+k])],s=AppendTo[s,b];k++];ss=AppendTo[ss,k],{n,103}]; (* Zak Seidov, Nov 09 2015 *)
Comments