cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068845 Final digits of the smallest prime starting with n!.

Original entry on oeis.org

1, 3, 1, 1, 1, 7, 1, 29, 17, 43, 29, 13, 47, 19, 73, 37, 19, 41, 31, 41, 31, 1, 1, 37, 31, 37, 59, 41, 53, 41, 47, 1, 1, 89, 37, 53, 73, 1, 1, 43, 151, 1, 47, 1, 509, 127, 71, 167, 67, 167, 149, 67, 61, 139, 67, 59, 107, 241, 1, 61, 1, 149, 293, 127, 71, 151, 337, 107, 1
Offset: 1

Views

Author

Amarnath Murthy, Mar 10 2002

Keywords

Comments

a(n)= 1 or a(n) >= the smallest prime larger than n. Conjecture: The terms are noncomposite numbers. Motivation: a composite number not coprime to n! cannot be a member.

Examples

			a(7) = 11 because the smallest prime starting with 7! = 5040 is 504011 and so the last digits are 11.
		

References

  • Amarnath Murthy, Smarandache Reciprocal function and an elementary inequality. Smarandache Notions Journal, Vol. 1-2-3, Spring 2000.

Crossrefs

Cf. A068844.

Programs

  • Maple
    for i from 1 to 70 do a := nextprime(i!*10); b := 1; while(a-i!*10^b>=10^b) do b := b+1; a := nextprime(i!*10^b); end do; c[i] := a-i!*10^b; end do:q := seq(c[i],i=1..70);
  • Mathematica
    Table[p = i!; k = 1; While[IntegerDigits[p] != Take[IntegerDigits[x = NextPrime[y = p*10^k]], IntegerLength[p]], k += 1]; x - y, {i, 69}] (* Jayanta Basu, Aug 09 2013 *)

Extensions

More terms from Sascha Kurz, Mar 17 2002

A095192 Smallest semiprime with same leading digits as n!.

Original entry on oeis.org

10, 21, 62, 247, 1202, 7201, 50401, 403201, 3628801, 36288001, 399168002, 4790016001, 62270208001, 871782912007, 130767436800017, 209227898880001, 3556874280960001, 64023737057280001, 12164510040883200031
Offset: 1

Views

Author

Jason Earls, Jun 21 2004

Keywords

Crossrefs

Programs

  • Mathematica
    ssp[n_]:=Module[{f=n!,k=0},While[PrimeOmega[10^Max[IntegerLength[k],1] f+k]!=2,k++];10^Max[1,IntegerLength[k]] f+k]; Array[ssp,20] (* Harvey P. Dale, May 05 2019 *)
Showing 1-2 of 2 results.