A068858 a(1) = 3 = 1*3; a(n) = smallest multiple of a(n-1) which is a product of two consecutive odd numbers.
3, 15, 195, 4095, 2477475, 448422975, 19384876786275, 70676639845770308825475, 11604095937711402889585984522057770447375, 56023729629975618843823135187551800751351023283966800458449243286895375
Offset: 1
Keywords
Examples
195 = 13*15 belongs to this sequence and the smallest multiple of 195 which is a product of two consecutive odd numbers is 4095 = 63*65.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..12
Crossrefs
Cf. A068857.
Programs
-
Maple
f:= proc(x) local V,V1,y; V:= map(t -> rhs(op(t))-1, [msolve(r^2=1,x)]); V:= map(t -> `if`(t*(t+2)=x, t + x, t), V); y:= min(map(t -> `if`(t::even, t+x, t), V)); y*(y+2) end proc: A[1]:= 3: for n from 2 to 11 do A[n]:= f(A[n-1]) od: seq(A[i],i=1..11); # Robert Israel, May 14 2017
-
Python
from itertools import islice from sympy import sqrt_mod_iter def A068858_gen(): # generator of terms a = 3 while True: yield a b = a+1 for d in sqrt_mod_iter(1,a): if d**2-1 == a: d += a if d&1: d += a if d < b: b = d a = b**2-1 A068858_list = list(islice(A068858_gen(),11)) # Chai Wah Wu, May 05 2024
Extensions
More terms from Sascha Kurz, Mar 23 2002
Corrected by Robert Israel, May 14 2017
Comments