cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068876 Smallest n-digit prime with property that digits alternate in parity.

Original entry on oeis.org

2, 23, 101, 2129, 10103, 210101, 1010129, 21010127, 101010167, 2101010147, 10101010163, 210101010187, 1010101010341, 21010101010147, 101010101010323, 2101010101010141, 10101010101010141, 210101010101010323, 1010101010101010143
Offset: 1

Views

Author

Amarnath Murthy, Mar 19 2002

Keywords

Examples

			a(4) = 2129 as 2, 1, 2 and 9 have even and odd parity alternately.
		

Crossrefs

Programs

  • Maple
    alp:= proc(n) local L,d;
    L:= convert(n,base,10);
    d:= nops(L);
    if d::even then L:= L + map(op, [[0,1]$(d/2)]) else L:= L + map(op, [[0,1]$((d-1)/2),[0]]) fi;
    nops(convert(L mod 2, set))=1
    end proc:
    f:= proc(d) local s;
      if d::even then s:= 2*10^(d-1)+(10^d-1)/99-1
      else s:= (10^(d+1)-1)/99-1
      fi;
      do s:= nextprime(s);
         if alp(s) then return s fi
      od
    end proc:
    seq(f(d),d=1..20); # Robert Israel, Aug 14 2018
  • Mathematica
    fQ[n_] := Block[{m = Mod[ IntegerDigits@ n, 2]}, m == Split[m, UnsameQ][[1]]]; f[n_] := Block[{c = 1 + 100 (100^Ceiling[n/2 - 1] - 1)/99, k}, k = If[ OddQ@ n, c, 2*10^(n - 1) + c]; k = NextPrime[k - 1]; While[ !fQ@ k, k = NextPrime@ k]; k]; Array[f, 21] (* Robert G. Wilson v, Apr 01 2011 *)
  • Sage
    concat = lambda x: Integer(''.join(map(str,x)),base=10)
    def A068876(n):
        dd = {0:range(0,10,2), 1: range(1,10,2)}
        for d0 in [1..9]:
            if n % 2 == 0 and d0 % 2 == 1: continue # optimization
            ds = [dd[(d0+1+i) % 2] for i in range(n-1)]
            for dr in cartesian_product(ds):
                c = concat([d0]+dr)
                if is_prime(c): return c  # D. S. McNeil, Apr 02 2011

Extensions

a(9)-a(13) corrected and a(14)-a(19) from Donovan Johnson, Apr 01 2011