cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068899 Triangular numbers containing 2n digits obtained by duplicating the first n digits; i.e., triangular numbers in A020338.

Original entry on oeis.org

55, 66, 5050, 5151, 203203, 255255, 426426, 500500, 501501, 581581, 828828, 930930, 39653965, 50005000, 50015001, 61566156, 3347133471, 5000050000, 5000150001, 6983669836, 220028220028, 500000500000, 500001500001
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2002

Keywords

Comments

The sequence is infinite: the 10^n-th and the (10^n + 1)-th triangular numbers are members. It is a subsequence of A068898.

Crossrefs

Programs

  • Maple
    N:= 10: # to get all terms of up to 2N digits
    Res:= NULL:
    for n from 1 to N do
       Divs:= select(t -> igcd(t,(10^n+1)/t)=1, numtheory:-divisors(10^n+1));
       for d in Divs do
         for e in [1,3] do
          u:= chrem([1,-1,e],[d,(10^n+1)/d,4]);
          y:= (u^2-1)/8/(10^n+1);
          if y >= 10^(n-1) and y < 10^n then Res:= Res, y*(10^n+1) fi;
    od od od:
    sort([Res]); # Robert Israel, Feb 27 2017
  • Mathematica
    Select[Accumulate[Range[5*10^6]],EvenQ[IntegerLength[#]]&&Take[ IntegerDigits[ #],IntegerLength[ #]/2]== Take[IntegerDigits[#],-IntegerLength[#]/2]&] (* Harvey P. Dale, Aug 20 2022 *)

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jan 10 2003