cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068914 Square array read by antidiagonals of number of k step walks (each step +-1 starting from 0) which are never more than n or less than 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 3, 2, 1, 1, 0, 1, 4, 5, 3, 2, 1, 1, 0, 1, 8, 8, 6, 3, 2, 1, 1, 0, 1, 8, 13, 9, 6, 3, 2, 1, 1, 0, 1, 16, 21, 18, 10, 6, 3, 2, 1, 1, 0, 1, 16, 34, 27, 19, 10, 6, 3, 2, 1, 1, 0, 1, 32, 55, 54, 33, 20, 10, 6, 3, 2, 1, 1, 0, 1, 32, 89
Offset: 0

Views

Author

Henry Bottomley, Mar 06 2002

Keywords

Comments

The (n,k)-entry of the square array is p(n,k) in the R. Kemp reference (see Table 1 on p. 160 and Theorem 2 on p. 159). - Emeric Deutsch, Jun 16 2011

Examples

			Rows start:
1,0,0,0,0,...;
1,1,1,1,1,...;
1,1,2,2,4,...;
1,1,2,3,5,...;
etc.
		

Crossrefs

Rows include effectively A000007, A000012, A016116, A000045, A038754, A028495, A030436, A061551. Central and lower diagonals are A001405. Cf. A068913 for starting in the middle rather than an edge.
Reflected version of A094718.

Programs

  • Maple
    v := ((1-sqrt(1-4*z^2))*1/2)/z: G := proc (k) options operator, arrow: (1+v^2)*(1-v^(k+1))/((1-v)*(1+v^(k+2))) end proc: a := proc (n, k) options operator, arrow: coeff(series(G(k), z = 0, 80), z, n) end proc: for n from 0 to 15 do seq(a(n, k), k = 0 .. 15) end do; # yields the first 16 entries of the first 16 rows of the square array
    v := ((1-sqrt(1-4*z^2))*1/2)/z: G := proc (k) options operator, arrow: (1+v^2)*(1-v^(k+1))/((1-v)*(1+v^(k+2))) end proc: a := proc (n, k) options operator, arrow: coeff(series(G(k), z = 0, 80), z, n) end proc: for n from 0 to 13 do seq(a(n-i, i), i = 0 .. n) end do; # yields the first 14 antidiagonals of the square array in triangular form
  • Mathematica
    v = (1-Sqrt[1-4z^2])/(2z); f[k_] = (1+v^2)*(1-v^(k+1))/((1-v)*(1+v^(k+2))) ; m = 14; a = Table[ PadRight[ CoefficientList[ Series[f[k], {z, 0, m}], z], m], {k, 0, m}]; Flatten[Table[a[[n+1-k, k]], {n, m}, {k, n, 1, -1}]][[;; 95]] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
  • PARI
    T(n,k) = sum(j=floor(-n/(k+2)), ceil(n/(k+2)), (-1)^j*binomial(n,floor((n+(k+2)*j)/2))); \\ Stefano Spezia, May 08 2020

Formula

An explicit expression for the (n,k)-entry of the square array can be found in the R. Kemp reference (Theorem 2 on p. 159). - Emeric Deutsch, Jun 16 2011
The g.f. of column k is (1 + v^2)*(1 - v^(k+1))/((1 - v)*(1 + v^(k+2))), where v = (1 - sqrt(1-4*z^2))/(2*z) (see p. 159 of the R. Kemp reference). - Emeric Deutsch, Jun 16 2011