cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068921 Number of ways to tile a 2 X n room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961
Offset: 0

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068927 for incongruent tilings, A068920 for more info.
Cf. A000930, A078012, first column of A272471.

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1}, {1, 1, 2}, 42] (* Robert G. Wilson v, Jul 12 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x^2)/(1-x-x^3)) \\ G. C. Greubel, Apr 26 2017

Formula

For n >= 3, a(n) = a(n-1) + a(n-3).
a(n) = A000930(n+1).
From Frank Ruskey, Jun 07 2009: (Start)
G.f.: (1+x^2)/(1-x-x^3).
a(n) = Sum_{j=0..floor(n/2)} binomial(n-2j+1, j). (End)
G.f.: Q(0)*( 1+x^2 )/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013