A068953 Number of bases B (2 <= B <= n) such that every digit of n in base B is 0 or 1.
0, 1, 2, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 5, 5, 3, 3, 3, 3, 5, 5, 3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 5, 5, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 6, 5, 3, 5, 5, 3, 3, 3, 3, 5, 5, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3
Offset: 1
Examples
a(30)=5, since 30 written in the 5 bases 2, 3, 5, 29, 30 is 11110, 1010, 110, 11, 10.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A059972.
Programs
-
Maple
f:= n -> nops(select(b -> convert(convert(n,base,b),set) subset {0,1}, {$2..n} intersect (numtheory:-divisors(n) union numtheory:-divisors(n-1)))): map(f, [$1..200]); # Robert Israel, Jul 04 2018
-
Mathematica
a[1]=0; a[n_] := Length[Select[Rest[Union[Divisors[n], Divisors[n-1]]], Max@@IntegerDigits[n, # ]==1&]]
-
PARI
a(n) = sum(b=2, n, #select(x->(x>1), digits(n, b)) == 0); \\ Michel Marcus, Jul 04 2018
Comments