cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069071 a(n) = (2*n + 1)*((2*n + 1)^4 + 4).

Original entry on oeis.org

5, 255, 3145, 16835, 59085, 161095, 371345, 759435, 1419925, 2476175, 4084185, 6436435, 9765725, 14349015, 20511265, 28629275, 39135525, 52522015, 69344105, 90224355, 115856365, 147008615, 184528305, 229345195, 282475445, 345025455, 418195705, 503284595, 601692285
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

The formula for Pi in the formula section was discovered by the mathematician and astronomer Nilakantha Somayaji (1444-1544) (Roy, 1990). - Amiram Eldar, Jan 18 2023

Crossrefs

Cf. A019683.

Programs

  • Mathematica
    a[n_] := (2*n + 1)*((2*n + 1)^4 + 4); Array[a, 30, 0] (* Amiram Eldar, Jul 16 2022 *)

Formula

Pi = 16 * Sum_{n>=0} (-1)^n/a(n).
From Elmo R. Oliveira, Sep 03 2025: (Start)
G.f.: 5*(1 + x)*(1 + 44*x + 294*x^2 + 44*x^3 + x^4)/(x-1)^6.
E.g.f.: (5 + 250*x + 1320*x^2 + 1360*x^3 + 400*x^4 + 32*x^5)*exp(x).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). (End)