cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069142 Primes p such that p+2, 2p+1, and 2p+3 are also prime.

Original entry on oeis.org

5, 29, 659, 809, 2129, 2549, 3329, 3389, 5849, 6269, 10529, 33179, 41609, 44129, 53549, 55439, 57329, 63839, 65099, 70379, 70979, 72269, 74099, 74759, 78779, 80669, 81929, 87539, 93239, 102299, 115469, 124769, 133979, 136949, 156419
Offset: 1

Views

Author

Neil Fernandez, Apr 08 2002

Keywords

Comments

Previous name: Lower prime in a twin pair that yields another.
a(n) gives the terms for A005382(i)-A005384(j)=2. - J. M. Bergot, Mar 12 2015

Examples

			659 and 661 form a prime twin pair. Their sum is 1320. 1320 is sandwiched between 1319 and 1321, which form another prime twin pair. So 659 is in the sequence.
		

Crossrefs

Cf. A014574.
Cf. A066388.

Programs

  • Magma
    [p: p in PrimesUpTo(160000) | IsPrime(p+2) and IsPrime(2*p+1) and IsPrime(2*p+3)]; // Vincenzo Librandi, Apr 09 2013
    
  • Mathematica
    p = q = 1; Do[q = Prime[n]; If[p + 2 == q && PrimeQ[2p + 1] && PrimeQ[2p + 3], Print[p]]; p = q, {n, 1, 10^4}]
    Select[Prime[Range[15000]], PrimeQ[# + 2] && PrimeQ[2 # + 1] && PrimeQ[2 # + 3]&] (* Vincenzo Librandi, Apr 09 2013 *)
  • PARI
    forprime(p=1,10^5,if(isprime(p+2)&&isprime(2*p+1)&&isprime(2*p+3),print1(p,", "))) \\ Derek Orr, Mar 11 2015

Formula

a(n) = A066388(n)-1. - R. J. Mathar, Nov 02 2023

Extensions

Edited and extended by Robert G. Wilson v, Apr 11 2002