A069158 a(n) = Product{d|n} mu(d), product over positive divisors, d, of n, where mu(d) = Moebius function (A008683).
1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, 1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, 1, -1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, 1, -1, 0, 0, 1, -1, 0, 1, 1, 1, 0, -1, 0, 1, 0, 1, 1, 1, 0, -1, 0, 0, 0, -1, 1, -1, 0, 1, 1
Offset: 1
Keywords
Examples
a(6) = mu(1)*mu(2)*mu(3)*mu(6) = 1*(-1)*(-1)*1 = 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a069158 = product . a225817_row -- Reinhard Zumkeller, Jul 30 2013
-
Magma
f := function(n); t1 := &*[MoebiusMu(d) : d in Divisors(n) ]; return t1; end function;
-
Maple
A069158 := proc(n) mul(numtheory[mobius](d),d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, May 28 2016
-
Mathematica
a[n_] := Product[MoebiusMu[d], {d, Divisors[n]}]; Array[a, 106] (* Jean-François Alcover, Feb 22 2018 *)
-
PARI
a(n) = vecprod(apply(moebius, divisors(n))); \\ Amiram Eldar, Feb 10 2025
Comments