A069354 Lowest base with simple divisibility test for n primes; smallest B such that omega(B) + omega(B-1) = n.
2, 3, 6, 15, 66, 210, 715, 7315, 38571, 254541, 728365, 11243155, 58524466, 812646121, 5163068911, 58720148851, 555409903686, 4339149420606, 69322940121436, 490005293940085, 5819629108725510, 76622240600506315
Offset: 1
Examples
a(4) = 15 because in base 15 you can test for divisibility by 4 different primes (3 and 5 directly, 2 and 7 by "casting out 14's")
Links
- Peter Luschny, Strong coprimality, November 2010.
- Robert Munafo, Low bases with many divisibility tests
Programs
-
Maple
A069354_list := proc(n) local i, L, Max; Max := 1; L := NULL; for i from 2 to n do if nops(numtheory[factorset](i*(i-1))) = Max then Max := Max + 1; L := L,i fi; od; L end: # Peter Luschny, Nov 12 2010
Formula
a(n) = A059958(n) + 1 for 0 < n < 19. - Robert G. Wilson v, Feb 18 2014
Extensions
More terms added using data from A059958 (see there for credits) by M. F. Hasler, Jan 15 2014
a(19)-a(21) from Michael S. Branicky, Feb 11 2023
a(22) from Michael S. Branicky, Feb 23 2023
Comments