A069417 Number of 3 X n binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row.
1, 15, 147, 1231, 9539, 70679, 509019, 3596367, 25070707, 173088903, 1186544331, 8090866303, 54950124515, 372067098167, 2513408596923, 16948369098159, 114128268554323, 767705581586151, 5159843165163435, 34657637020377055, 232672006452068291, 1561421588852637335
Offset: 1
Examples
From _Andrew Howroyd_, Oct 27 2020: (Start) Some of the a(2) = 15 arrays are: 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (13,-48,40,-8).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{13, -48, 40, -8}, {1, 15, 147, 1231}, 25] (* Paolo Xausa, Feb 08 2024 *)
-
PARI
Vec((1 + 2*x)/((1 - 7*x + 2*x^2)*(1 - 6*x + 4*x^2)) + O(x^25)) \\ Andrew Howroyd, Oct 27 2020
Formula
From Andrew Howroyd, Oct 27 2020: (Start)
a(n) = 13*a(n-1) - 48*a(n-2) + 40*a(n-3) - 8*a(n-4) for n > 4.
G.f.: x*(1 + 2*x)/((1 - 7*x + 2*x^2)*(1 - 6*x + 4*x^2)).
(End)
Extensions
Terms a(12) and beyond from Andrew Howroyd, Oct 27 2020