A069479
Smallest n-tuply-lonely non-twin prime.
Original entry on oeis.org
23, 1039, 403026797, 121829611399
Offset: 1
An n-tuply lonely non-twin prime is a non-twin prime that is sandwiched between exactly n pairs of prime twins on both sides. a(2)=1039 because 1039 is the first non-twin to be sandwiched between exactly 2 pairs of twins on each side (1019,1021,1031,1033 and 1049,1051,1061,1063).
A227323
Prime(k) such that each of the three preceding and also each of the three following primes are twin primes.
Original entry on oeis.org
11, 1039, 2099, 4253, 9433, 9437, 62983, 62987, 72229, 72251, 91121, 386401, 392269, 392279, 495589, 495611, 626617, 663583, 663587, 754973, 873553, 908857, 909301, 909317, 909319, 909329, 972137, 1006309, 1006331, 1138393, 1138409, 1159201
Offset: 1
-
istwp := proc(n)
if isprime(n) then
if isprime(n+2) or isprime(n-2) then
true;
else
false;
end if;
else
false;
end if;
end proc:
for i from 4 do
p := ithprime(i) ;
p1 := prevprime(p) ;
if istwp(p1) then
p2 := prevprime(p1) ;
if istwp(p2) then
p3 := prevprime(p2) ;
if istwp(p3) then
p1 := nextprime(p) ;
if istwp(p1) then
p2 := nextprime(p1) ;
if istwp(p2) then
p3 := nextprime(p2) ;
if istwp(p3) then
printf("%d\n",p) ;
end if;
end if;
end if;
end if;
end if;
end if;
end do: # R. J. Mathar, Jul 13 2013
Showing 1-2 of 2 results.
Comments