A069469 Numbers k such that prime(reversal(k)) = reversal(prime(k)). Ignore leading 0's.
1, 2, 3, 4, 5, 12, 21, 8114118, 535252535
Offset: 1
Examples
Let f(n) = prime(n). Then f(21) = 73, f(12) = 37, so f(reverse(21)) = reverse(f(21)). Therefore 21 belongs to the sequence.
Links
- Jessie Byrnes, Chris Spicer and Alyssa Turnquist, The Sheldon Conjecture. Math Horizons, Vol. 23, No. 2 (November 2015), pp. 12-15 (4 pages); alternate link.
- Carl Pomerance and Chris Spicer, Proof of the Sheldon Conjecture, The American Mathematical Monthly, September 2019, 126(8), 688-698; alternate link.
Programs
-
Mathematica
rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; f[n_] := Prime[n]; Select[Range[10^5], f[rev[ # ]] == rev[f[ # ]] &]
Extensions
a(8) added by Ivan Neretin, May 30 2016
a(9) from Giovanni Resta, Apr 13 2017
Comments