A069518 Geometric mean of digits = 4 and digits are in nondecreasing order.
4, 28, 44, 188, 248, 444, 1488, 2288, 2448, 4444, 12888, 14488, 22488, 24448, 44444, 118888, 124888, 144488, 222888, 224488, 244448, 444444, 1148888, 1228888, 1244888, 1444488, 2224888, 2244488, 2444448, 4444444, 11288888, 11448888, 12248888, 12444888
Offset: 1
Examples
1488 is a term but 1848 is not.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {}; b = 4; Do[c = Apply[ Times, IntegerDigits[n]]/b^Floor[ Log[10, n] + 1]; If[c == 1 && Position[a, FromDigits[ Sort[ IntegerDigits[n]]]] == {}, Print[n]; a = Append[a, n]], {n, 1, 10^7}]
-
Python
from math import prod from sympy.utilities.iterables import multiset_combinations def auptod(terms): n, digits, alst, powsexps2 = 0, 1, [], [(1, 0), (2, 1), (4, 2), (8, 3)] while n < terms: target = 4**digits mcstr = "".join(str(d)*(digits//max(1, r//2)) for d, r in powsexps2) for mc in multiset_combinations(mcstr, digits): if prod(map(int, mc)) == target: n += 1 alst.append(int("".join(mc))) if n == terms: break else: digits += 1 return alst print(auptod(34)) # Michael S. Branicky, Apr 28 2021
Extensions
Edited and extended by Robert G. Wilson v, Apr 01 2002
Name edited and a(31) and beyond from Michael S. Branicky, Apr 28 2021
Comments