A069521 Smallest multiple of n with digit sum = 2, or 0 if no such number exists, e.g., a(3k)=0.
2, 2, 0, 20, 20, 0, 1001, 200, 0, 20, 11, 0, 1001, 10010, 0, 2000, 100000001, 0, 1000000001, 20, 0, 110, 100000000001, 0, 200, 10010, 0, 100100, 100000000000001, 0, 0, 20000, 0, 1000000010, 10010, 0, 0, 10000000010, 0, 200, 0, 0, 0, 1100, 0
Offset: 1
Examples
a(7) = a(13) = 1001. Digit sum of 1001 = 2 and is the smallest such multiple of 7 and 13. a(17) = 100000001 = 17*5882353.
Links
- Robert Israel, Table of n, a(n) for n = 1..2016
Programs
-
Maple
f:= proc(n) local a,b,c,k; a:= padic:-ordp(n,2); b:= padic:-ordp(n,5); c:= n/(2^a*5^b); if c = 1 then return 2*10^max(a-1,b) fi; k:= traperror(NumberTheory:-ModularLog(-1,10,c)); if k = "no solutions exist" then 0 else 10^max(a,b) * (1 + 10^k) fi end proc: map(f, [$1..50]); # Robert Israel, Feb 11 2023
Formula
From Robert Israel, Feb 11 2023: (Start)
If n = 2^a * 5^b, a(n) = 2*10^max(a-1,b).
Otherwise a(n) = 0. (End)
Extensions
More terms from Ray Chandler, Jul 30 2003
Comments