A069535 Treated as strings, n and its reversal are substrings of n!.
1, 2, 4, 20, 30, 33, 42, 44, 45, 51, 60, 67, 72, 75, 78, 79, 80, 81, 82, 84, 88, 91, 94, 95, 97, 98, 99, 116, 140, 141, 166, 170, 180, 188, 198, 200, 202, 210, 222, 228, 231, 238, 252, 261, 264, 265, 272, 285, 286, 292, 293, 297, 311, 313, 315, 317, 321
Offset: 1
Examples
42! = 1405006117752879898543142606244511569936384000000000, which contains both 42 and 24 as substrings. Hence 42 is a term of the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Pe, J. Fixated Points of Arithmetical Functions
Crossrefs
Cf. A068588.
Programs
-
Maple
filter:= proc(n) local m,L,R,LN; uses StringTools; L:= sprintf("%d",n); m:= padic:-ordp(n,10); R:= Reverse(L)[m+1..-1]; LN:= sprintf("%d",n!); Search(L,LN) > 0 and Search(R,LN) > 0 end proc: select(filter, [$1..1000]); # Robert Israel, Apr 28 2021
-
Mathematica
r = {}; Do[m = n!; s = ToString[m]; If[ StringPosition[s, ToString[n]] != {} && StringPosition[s, ToString[ FromDigits[ Reverse[ IntegerDigits[n]]]]] != {}, r = Append[r, n]], {n, 1, 321}]; r
Extensions
Edited and extended by Robert G. Wilson v, Apr 19 2002
Comments