A069660 Order of the subgroup of the symmetric group S_n generated by the cycles (1,3) and (1,2,3,...,n).
6, 8, 120, 72, 5040, 1152, 362880, 28800, 39916800, 1036800, 6227020800, 50803200, 1307674368000, 3251404800, 355687428096000, 263363788800, 121645100408832000, 26336378880000, 51090942171709440000, 3186701844480000, 25852016738884976640000, 458885065605120000
Offset: 3
Programs
-
Mathematica
a[n_] := If[OddQ[n], n!, 2 * ((n/2)!)^2]; Array[a, 20, 3] (* Amiram Eldar, Jul 12 2025 *)
-
PARI
a(n) = if(n % 2, n!, 2 * ((n/2)!)^2); \\ Amiram Eldar, Jul 12 2025
Formula
If n is odd a(n) = n!, if n is even a(n) = 2 * ((n/2)!)^2 = 2 * n! / A000984(n/2) = 2 * A001044(n/2).
Sum_{n>=3} 1/a(n) = BesselI(0, 2)/2 + sinh(1) - 2. - Amiram Eldar, Jul 12 2025
Extensions
More terms from Benoit Cloitre, May 20 2002