cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069690 Primes that yield another prime on placing a 9 on both sides (as leading and trailing digits).

Original entry on oeis.org

2, 19, 23, 31, 41, 43, 47, 53, 61, 67, 71, 73, 83, 101, 107, 109, 113, 149, 163, 193, 211, 239, 241, 263, 269, 277, 313, 317, 331, 347, 373, 397, 409, 421, 439, 443, 499, 521, 523, 541, 547, 607, 617, 619, 641, 647, 673, 677, 757, 787, 829, 863, 877, 907, 911
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Examples

			241 belongs to this sequence as 92419 is also a prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) isprime(9+10*n+9*10^(2+ilog10(n))) end proc:
    select(filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Feb 02 2021
  • Mathematica
    Select[ Range[2000], PrimeQ[ # ] && PrimeQ[ FromDigits[ Insert[ IntegerDigits[ # ], 9, {{1}, {-1}}]]] &]
    Select[Prime[Range[200]],PrimeQ[FromDigits[Join[{9},IntegerDigits[#],{9}]]]&] (* Harvey P. Dale, Nov 07 2022 *)
  • Python
    from sympy import isprime, primerange
    def ok(p): return isprime(int('9'+str(p)+'9'))
    def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)]
    print(aupto(911)) # Michael S. Branicky, Feb 19 2021

Extensions

Edited and extended by Robert G. Wilson v, May 03 2002