A069708 Triangular numbers with property that swapping first and last digits also gives a triangular number.
1, 3, 6, 10, 55, 66, 120, 153, 171, 190, 300, 351, 595, 630, 666, 820, 1081, 1431, 1711, 1891, 3003, 3403, 5050, 5460, 5565, 5995, 6216, 6786, 8128, 8778, 10011, 10731, 11781, 12561, 13041, 13861, 15051, 15931, 16471, 17020, 17391, 17578, 18721
Offset: 1
Examples
820 and 028 = 28 both are triangular numbers hence both are members.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Do[t = IntegerDigits[n(n + 1)/2]; u = t; u[[1]] = t[[ -1]]; u[[ -1]] = t[[1]]; t = FromDigits[u]; u = Floor[ Sqrt[2t]]; If[ u(u + 1)/2 == t, Print[n(n + 1)/2]], {n, 1, 300}] sfl[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Flatten[Join[{Last[ idn],Rest[ Most[ idn]],First[ idn]}]]]]; Join[ {1,3,6},Select[ Accumulate[ Range[200]],OddQ[Sqrt[8 sfl[#]+1]]&]//Quiet] (* Harvey P. Dale, Jan 09 2021 *)
Extensions
Edited, corrected and extended by Robert G. Wilson v
Edited by N. J. A. Sloane, Jan 20 2009
Comments