cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069790 Triangular numbers with arithmetic mean of digits = 1 (sum of digits = number of digits).

Original entry on oeis.org

1, 120, 210, 300, 112101, 100600020, 101111310, 110120220, 200130021, 200310120, 1000051003, 1010004040, 1130002030, 1411000003, 2002021003, 3200200003, 5000050000, 100110002070, 111111101310, 111202101003, 180000300000, 211104100200, 231201020001, 500001500001, 501001000500, 100021000424010
Offset: 1

Views

Author

Amarnath Murthy, Apr 08 2002

Keywords

Comments

The sum of the digits of a triangular number is 0, 1, 3 or 6 (mod 9).
From Robert Israel, Aug 24 2018: (Start)
Suppose A007953(x) + A007953(2*x^2) - A055642(2*x^2) is even and
A007953(x) + A007953(2*x^2) >= 2*A055642(x) + A055642(2*x^2).
Then 10^k*x*(1+2*10^k*x) is in the sequence, where k = (A007953(x) + A007953(2*x^2) - A055642(2*x^2))/2.
In particular, x = 10^j-2 satisfies this criterion for all j>=1, with k = j. Thus the sequence is infinite. (End)

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
      if n*9 < k then return {} fi;
      if n = 1 then return {k} fi;
      `union`(seq(map(t -> 10*t+j, procname(n-1,k-j)),j=0..min(9,k)))
    end proc:
    T(1,0):= {}:
    sort(convert(select(t -> issqr(8*t+1), `union`(seq(seq(T(9*i+j,9*i+j),j=[0,1,3,6]),i=0..1))),list)); # Robert Israel, Aug 24 2018
  • Mathematica
    s=Select[Range[500000], Length[z=IntegerDigits[ #(#+1)/2]]==Plus@@z&]; s(s+1)/2
    Select[Accumulate[Range[500000]],Mean[IntegerDigits[#]]==1&] (* Harvey P. Dale, May 05 2011 *)

Extensions

Edited by Dean Hickerson and Robert G. Wilson v, Apr 10 2002
More terms from Robert Israel, Aug 24 2018