cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069793 Find smallest k such that prime(k) and prime(n+k) use the same digits; sequence gives prime(k).

Original entry on oeis.org

2, 1913, 113, 79, 179, 13, 337, 137, 1039, 37, 139, 619, 1031, 17, 1123, 349, 563, 3617, 1213, 1193, 839, 1129, 617, 1597, 2153, 1021, 173, 127, 571, 241, 3037, 3361, 131, 137, 113, 2141, 359, 1361, 1471, 1031, 1367, 587, 1013, 6337, 251, 2153, 149, 1049
Offset: 0

Views

Author

Amarnath Murthy, Apr 09 2002

Keywords

Examples

			a(1) = 1913 as the next prime 1931 uses the same digits. a(2) = 113 as the next to next prime 131 uses the same digits.
		

Crossrefs

Programs

  • Mathematica
    Do[a = {{{0}}}; a = Flatten[ Append[a, Table[{1}, {n}]], 1]; k = 1; While[ a[[1]] != a[[ -1]], a = Drop[a, 1]; k++; a = Append[a, Sort[ IntegerDigits[ Prime[k]]]]]; Print[ Prime[k - n]], {n, 1, 40}]

Extensions

Edited, corrected and extended by Robert G. Wilson v, Apr 12 2002

A069794 Prime(n) and prime(n+2) use the same digits.

Original entry on oeis.org

113, 313, 1579, 2113, 2879, 3779, 4813, 5179, 5237, 5279, 5879, 6113, 6379, 8713, 9091, 9479, 9679, 10313, 10513, 10613, 13313, 13913, 14779, 15013, 17579, 18713, 19213, 20879, 22013, 22091, 22679, 24179, 25037, 25913, 26479, 27179, 28579
Offset: 1

Views

Author

Amarnath Murthy, Apr 09 2002

Keywords

Comments

Prime(n) and prime(n+2) must use the same digits and the same number of repetitions of each digit. - Harvey P. Dale, Apr 26 2015

Examples

			113 is a member as the next to next prime 131 uses the same digits.
		

Crossrefs

Programs

  • Mathematica
    p = {0}; q = {1}; r = {1}; Do[ If[p == r, Print[ Prime[n - 3]]]; p = q; q = r; r = Sort[ IntegerDigits[ Prime[n]]], {n, 3 10^3}]
    sdQ[n_]:=Sort[IntegerDigits[n]]==Sort[IntegerDigits[NextPrime[n,2]]]; Select[Prime[Range[4000]],sdQ] (* Harvey P. Dale, Apr 26 2015 *)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Apr 12 2002

A069795 Prime(n) and prime(n+3) use the same digits.

Original entry on oeis.org

79, 379, 613, 1013, 1979, 2713, 3613, 4817, 5413, 9413, 11113, 11579, 11813, 12437, 12479, 14713, 14813, 14879, 15313, 15937, 17239, 18617, 19037, 19979, 20071, 21379, 23279, 23813, 23917, 24337, 27091, 28279, 29437, 29537, 30091, 30781
Offset: 1

Views

Author

Amarnath Murthy, Apr 09 2002

Keywords

Examples

			79 is a member as the third next prime 97 uses the same digits.
		

Crossrefs

Programs

  • Mathematica
    p = {0}; q = {1}; r = {1}; s = {1}; Do[ If[p == s, Print[ Prime[n - 4]]]; p = q; q = r; r = s; s = Sort[ IntegerDigits[ Prime[n]]], {n, 3 10^3}]
    Prime[#]&/@Select[Range[3500],Sort[IntegerDigits[Prime[#]]]==Sort[ IntegerDigits[ Prime[ #+3]]]&] (* Harvey P. Dale, Mar 13 2019 *)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Apr 12 2002
Showing 1-3 of 3 results.