cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069869 Largest prime that is a concatenation of the parts of a partition of n, or 0 if no such prime exists.

Original entry on oeis.org

0, 11, 3, 211, 2111, 0, 112111, 1111211, 0, 11131111, 1121111111, 0, 111211111111, 2111111111111, 0, 31111111111111, 212111111111111, 0, 1111111111111111111, 2111111111111111111, 0, 111111111111111121111, 11111111111111111111111, 0, 211111111111111111111111
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2002

Keywords

Comments

Conjecture: a(n) = 0 only for n = 1 or n = 3k with k>1.

Examples

			a(4) = 211 as the partitions of 4 are (4), (3,1), (2,2), (2,1,1) (1,1,1,1). The primes that can be formed are 13, 31, 211 and 211 is the largest prime using a partition.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= proc(n) local k, w;
          if n=1 or n>3 and irem(n, 3)=0 then return 0 fi;
          for k from 0 do w:= max(select(isprime,
            map(x-> parse(cat(x[])), [seq(permute(i)[],
              i=map(x->[x[], 1$(n-k)], partition(k)))]))[]);
            if w>0 then return w fi
          od
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, May 25 2013
  • Mathematica
    f[n_] := If[ PrimeQ@n, n, If[n > 5 && Mod[n, 3] == 0, 0, Block[{len = PartitionsP[n], p = IntegerPartitions[n], t = {}}, Do[ AppendTo[t, Select[FromDigits /@ Join @@@ IntegerDigits /@ Permutations@p[[i]], PrimeQ@# &]], {i, len}]; t = Union@Flatten@t; If[Length@t > 0, Max@t, 0]] ]]; Array[f, 29]
  • Python
    from collections import Counter
    from operator import itemgetter
    from sympy.utilities.iterables import partitions, multiset_permutations
    from sympy import isprime
    def A069869(n):
        smax, m = 0, 0
        if n==3 or n%3:
            for s, p in sorted(partitions(n,size=True),key=itemgetter(0),reverse=True):
                if s0:
                    smax=s
        return m # Chai Wah Wu, Feb 21 2024

Extensions

More terms from David Wasserman, Apr 30 2003
a(8) corrected and a(16)-a(24) added by Robert G. Wilson v, Feb 06 2006
a(25) from Alois P. Heinz, May 25 2013