cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069895 2^a(n) divides (2n)^(2n): exponent of 2 in (2n)^(2n).

Original entry on oeis.org

2, 8, 6, 24, 10, 24, 14, 64, 18, 40, 22, 72, 26, 56, 30, 160, 34, 72, 38, 120, 42, 88, 46, 192, 50, 104, 54, 168, 58, 120, 62, 384, 66, 136, 70, 216, 74, 152, 78, 320, 82, 168, 86, 264, 90, 184, 94, 480, 98, 200, 102, 312, 106, 216, 110, 448, 114, 232, 118, 360, 122
Offset: 1

Views

Author

Labos Elemer, Apr 10 2002

Keywords

Crossrefs

Cf. A001511, A007814, A085534, A091512, A249153 (partial sums).

Programs

  • Julia
    function A069895List(length)
        a = zeros(Int, length)
        for n in 1:length a[n] = 2 * (isodd(n) ? n : n + a[div(n, 2)]) end
    a end
    A069895List(61) |> println # Peter Luschny, Oct 16 2021
    
  • Maple
    a:= 2*n*padic[ordp](2*n, 2):
    seq(a(n), n=1..61);  # Alois P. Heinz, Oct 14 2021
  • Mathematica
    Table[ Part[ Flatten[ FactorInteger[n^n]], 2], {n, 2, 124, 2}]
  • PARI
    a(n) = n<<=1; n*valuation(n,2); \\ Kevin Ryde, Oct 14 2021
    
  • Python
    def A069895(n): return n*(n&-n).bit_length()<<1 # Chai Wah Wu, Jul 11 2022

Formula

a(n) = 2*n*A001511(n).
a(n) = A007814(A085534(n)). [corrected by Kevin Ryde, Oct 15 2021]
G.f.: Sum_{k>=0} 2^(k+1)*x^2^k/(1-x^2^k)^2. - Ralf Stephan, Jun 07 2003
a(n) = 2 * A091512(n). - Alois P. Heinz, Oct 14 2021
Sum_{k=1..n} a(k) ~ 2*n^2. - Amiram Eldar, Sep 13 2024