cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070004 Numbers of the form 5*2^n or 5*3*2^n; a(n) = 5*A029744(n).

Original entry on oeis.org

5, 10, 15, 20, 30, 40, 60, 80, 120, 160, 240, 320, 480, 640, 960, 1280, 1920, 2560, 3840, 5120, 7680, 10240, 15360, 20480, 30720, 40960, 61440, 81920, 122880, 163840, 245760, 327680, 491520, 655360, 983040, 1310720, 1966080, 2621440
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Old name was: Numbers n such that phi(P(n)) - P(phi(n)) = 2, where P(x)=largest prime factor of x, or A000010(A006530(n))-A006530(A000010(n))=2.
Solutions to phi(P(x))-P(phi(x))=c, presence or absence of special prime factors in x are usually derivable.

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2]; Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 2], Print[n]], {n, 3, 1000000}]
    Union[Flatten[Table[2^n {5,15},{n,0,20}]]] (* or *) Join[ {5}, LinearRecurrence[ {0,2},{10,15},40]] (* Harvey P. Dale, Dec 23 2014 *)
  • PARI
    gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1)
    is(n)=eulerphi(gpf(n))-gpf(eulerphi(n))==2 \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) = 5*A029744(n); numbers of the forms 5*2^n and 15*2^n.
G.f.: 5*x*(x+1)^2/(1-2*x^2). - Ralf Stephan, Jul 15 2013
Sum_{n>=1} 1/a(n) = 8/15. - Amiram Eldar, Jan 02 2021

Extensions

Simpler name by Joerg Arndt, Jul 16 2013