cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070006 Composite numbers that are not a prime power and whose distinct prime divisors' arithmetic mean is a prime.

Original entry on oeis.org

21, 33, 57, 63, 69, 85, 93, 99, 105, 129, 133, 145, 147, 171, 177, 189, 195, 205, 207, 213, 217, 231, 237, 249, 253, 265, 279, 297, 309, 315, 363, 387, 393, 417, 425, 441, 445, 465, 469, 483, 489, 493, 505, 513, 517, 525, 531, 553, 565, 567, 573, 585, 597
Offset: 1

Views

Author

Labos Elemer, Apr 11 2002

Keywords

Comments

Subsequence of A070005.

Examples

			n = 993 = 3*331, mean = 334/2 = 167, a prime.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=Apply[Plus, ba[n]]/lf[n]; If[PrimeQ[s]&&Greater[lf[n], 1], Print[n]], {n, 2, 1000}]
    (* Second program: *)
    Select[Range@ 600, And[! PrimePowerQ@ #, PrimeQ@ Mean[FactorInteger[#][[All, 1]]]] &] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    lista(nn) = {for (n=2, nn, f = factor(n); if ((#f~ != 1) && (type(q=sum(k=1, #f~, f[k,1])/#f~) == "t_INT") && isprime(q), print1(n, ", ")););} \\ Michel Marcus, Mar 28 2015