cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070014 Ceiling of number of prime factors of n divided by the number of n's distinct prime factors.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Rick L. Shepherd, Apr 11 2002

Keywords

Comments

a(n) is the ceiling of the average of the exponents in the prime factorization of n.

Examples

			a(12) = 2 because 12 = 2^2 * 3^1 and ceiling(bigomega(12)/omega(12)) = ceiling((2+1)/2) = 2. a(36) = 2 because 36 = 2^2 * 3^2 and ceiling(bigomega(36)/omega(36)) = ceiling((2+2)/2) = 2. a(60) = 2 because 60 = 2^2 * 3^1 * 5^1 and ceiling(bigomega(60)/omega(60)) = ceiling((2+1+1)/3) = 2. 36 is in A067340. 12 and 60 are in A070011.
		

Crossrefs

Cf. A001221 (omega(n)), A001222 (bigomega(n)), A067340 (ratio is an integer before ceil is applied), A070011 (ratio is not an integer), A070012 (floor of ratio), A070013 (ratio rounded), A046660 (bigomega(n)-omega(n)), A088529, A088530.

Programs

  • Mathematica
    Table[Ceiling[PrimeOmega[n]/PrimeNu[n]], {n, 2, 106}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    v=[]; for(n=2,150,v=concat(v,ceil(bigomega(n)/omega(n)))); v
    
  • Python
    from sympy import primefactors, ceiling
    def bigomega(n): return 0 if n==1 else bigomega(n//primefactors(n)[0]) + 1
    def omega(n): return len(primefactors(n))
    def a(n): return ceiling(bigomega(n)/omega(n))
    print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017
  • Scheme
    (define (A070014 n) (let ((a (A001222 n)) (b (A001221 n))) (if (zero? (modulo a b)) (/ a b) (+ 1 (/ (- a (modulo a b)) b))))) ;; Antti Karttunen, Jul 12 2017
    

Formula

a(n) = ceiling(bigomega(n)/omega(n)) for n>=2.